PCIe 3.0 vs 2.0 – What is the Difference?

The primary difference between PCIe 3.0 vs. 2.0 is the bandwidth. PCIe v3.0 has twice the capacity as compared to its older v2.0 counterpart.

PCIe 2.0 has a bandwidth of 0.50 GB/s per PCIe lane. PCIe 3.0, on the other hand, offers 0.985 GB/s per PCIe lane.

In addition to that, PCIe 2.0 is also three years older than its 3.0 counterpart. PCIe 3.0 was first introduced in 2010, and PCIe 2.0 was introduced back in 2007.

As far as the physical shape and look of the slots go, they are the same. With PCIe 2.0, you can find PCIe x16, x8, x4, and x1 slots on motherboards with PCIe 3.0 protocol.

It should be noted that PCIe 3.0 is not the latest PCIe protocol available. This has already been superseded by PCIe 4.0, and you can find plenty of boards featuring bandwidths twice as high as PCIe 3.0 across their PCIe lanes.

What are PCIe Lanes?

To understand the primary difference between the version of PCIe protocols, you need to have a good grasp of what PCIe lanes are.

A PCIe lane helps connect an expansion card, like a graphics card, with the CPU for processing the data generated.

The amount of PCIe lanes you have at your disposal for installing expansion cards is limited. The total amount depends on your processor model and the motherboard chipset.

For instance, a typical PC can provide 20 PCIe lanes to the user (newer-gen CPUs and motherboards offer more). Sixteen of these lanes are almost always occupied by the graphics card on the primary x16 slot, whereas the rest of the four can be used for other devices like network adapters, video capture cards, PCIe splitters, etc.

Due to the limited nature of the PCIe lanes, they are precious, particularly if you want to add a lot of devices to your system.

Also: How Many PCIe Lanes Do I Have?

The overall bandwidth at which the connected device transfers data depends upon how many PCIe lanes it occupies AND the version of the PCIe protocol on the motherboard.

PCIe Version and their Corresponding Throughput

The table below summarizes the throughput rate (speed) of x1, x4, x8, and x16 slots on different PCIe versions.

1.00.2500.500 1.0002.0004.000

The version of the PCIe slot and the device has far-reaching ramifications both in terms of performance as well as in terms of the device’s size.

For instance, an x16 PCIe expansion card designed for PCIe v2.0 would technically perform the same if connected to an x8 slot on the PCIe v3.0 slot. This, in return, would save up 8 of your PCIe lanes!

Thus, manufacturers can make high-performance devices that utilize fewer PCIe lanes with each consecutive upgrade in the PCIe version.

Smaller devices mean lower heat production, which in turn means lower power consumption and smaller sub-components used, i.e., smaller heat sinks and smaller capacitors, which can ultimately save up on the manufacturing and the operating cost of the expansion card.

Hence, the difference between PCIe 3.0 vs. 2.0 is not just limited to the speed but also relates to how it shapes the overall PC market.

This does not just apply to PCIe 3.0 vs. 2.0 but concerns all PCIe generation upgrades.

Also Read:

What are Their Similarities?

Understanding the similarities may provide some perspective into how the PCIe interface works. This could help you with your PC builds.

PCIe 3.0 vs 2.0 - What is the Difference

Image showing 2 x PCIe x16 slots (blue) and 2 x PCIe x1 slots (white) all conforming to PCIe v2.0

No matter the generation, PCIe slots have the same size and physical shape. The motherboard above shows two PCIe x16 v2.0 and two PCIe x1 v2.0 slots.

Regarding the physical size, the x1 and x16 slots conforming to PCIe v3.0 and V4.0 are also the same.

Physical Size

PCIe 3.0 and 2.0 are part of the PCIe standard, although they are two different generations of the same. Their connectors on both the expansion devices and the slots are physically similar.

This means that if you have a motherboard running the older generation PCIe 2.0 slots but have a newer generation PCIe 3.0 card in hand, you can still install them on the board, and they will work fine.

The only problem will be that the device and the slot work at the speeds of the least powerful of the two. So, in this case, if you were to install a PCIe 3.0 device on a PCIe 2.0 slot, it would work, but the slot can be a bottleneck.

Also Read: What are PCIe Slots and Their Uses? – Beginners Guide

Often expansion cards do not saturate the entire bandwidth of the PCIe slots. For instance, a 1Gbps Ethernet Card that connects to an x1 slot can have a theoretical max transfer speed of 125 MB/s. This is far lower than the bandwidth of a single PCIe 3.0 or even a PCIe 2.0 lane.

Hence a card like this would not even saturate a single lane. This brings us to the next important point, cross-compatibility.


While PCIe 2.0 and 3.0 slots and devices can be used together, both these generations are compatible with those that preceded them and those that came after them.

This means a PCIe 3.0 device can work on a PCIe 2.0 slot. Similarly, a PCIe 2.0 device can work on a PCIe 3.0 slot.

Unfortunately, this brings us to another point: underutilization vs. bottleneck.

While it is true that PCIe slots and devices are cross-compatible, it is not an efficient way to build your system.

If you install a high-performance PCIe 3.0 x4 device, like an M.2 SSD expansion card, on a PCIe 2.0 x4 slot, it would technically have half the speed it was designed for, thus bottlenecking the performance.

On the other hand, installing a PCIe 2.0 x4 device on a PCIe 3.0 x4 slot would underutilize the more powerful and newer slot.

Also Read:

PCIe 3.0 vs. 2.0

Let’s take a finer look at these two in a head-to-head comparison.

1. PCIe Lane Speeds

The most crucial difference between the two is that the V2.0 has a bandwidth of 0.50 GB/s, whereas the newer V3.0 has 0.985 GB/s bandwidth.

This follows the idea that each consecutive PCIe generation doubles the bandwidth available per lane.

Also Read: Which Motherboard Supports PCIe 4.0?

2. Ramification on the Device Size and Speed

While not directly related to the PCIe bus and slot on the motherboard, the PCIe version can directly impact the expansion cards.

For instance, a PCIe V3.0 M.2 NVMe SSD Expansion Card takes up x4 PCIe lanes. However, it can only occupy older gen SSDs like the Samsung 970 Evo, which has a read speed of 3.5 GB/s.

On a PCIe V4.0, the NVMe SSD Expansion card can be installed with a newer-gen SSD like the Samsung 980 Pro, which can reach 7.0 GB/s (double the speed of the previous-gen SSD).

PCIe NVMe expansion card

The image above shows a typical M.2 NVMe SSD Expansion Card for an x4 PCIe slot. Source: Rivo

In addition to speed, the size and the lanes a device occupies also can change with each consecutive generation. For instance, an expansion card designed to use EIGHT V2.0 PCIe lanes would perform the same on a slot with FOUR V3.0 PCIe lanes if it were to be redesigned with a V3.0 x4 connector.

3. Encoding – For the Advanced Users

How the data is encoded dramatically impacts the overall bandwidth of any device, including that of the PCIe protocol.

PCIe 2.0 makes use of an 8b/10b encoding system. For every 10 bits transmitted from source to destination, 8 bits are the data, and the remaining 2 bits (20% of the total transmission) are considered overhead. This is not very efficient.

With PCIe 3.0, the data is encoded using a much more efficient 128b/130b encoding system. The ratio of the overhead here is much lower.

As such, PCIe 3.0 can achieve a higher bandwidth through a better encoding algorithm without doubling the transfer rate.

PCIe 2.0 supports a max transfer speed of 5.0 GT/s (Giga Transfers per second), whereas PCIe 3.0 supports a max transfer speed of 8.0 Giga Transfers per second. Note that despite doubling the bandwidth across each PCIe lane, the actual transfer rate isn’t doubled (i.e., it is not 10 GT/s). This is thanks to better encoding, which reduces transfer overheads.

This brings us to the next point:

4. Lower Power Usage

So, as mentioned earlier, PCIe 3.0 doubles the bandwidth without doubling the actual transfer rate (due to a better encoding algorithm). It can transfer more data per clock cycle than the previous generation. As a result of this, it achieves a higher efficiency.

This also results in an immediate improvement in power consumption.

Lower transfers -> lower power consumption -> smaller electrical sub-components required -> cheaper expansion card

5. Extended Use

Both PCIe 2.0 and 3.0 are compatible with all other generations of the PCIe standard. However, for users hoping to get the best performance over time from their system and keep up with the trends in the PCIe arena, it is best to go with a PCIe 3.0 motherboard over a PCIe 2.0 motherboard for several reasons.

The first reason is that the third generation is much faster, and you enjoy better speeds. High transfer rates mean that for applications like video rendering or gaming, you get better performance from PCIe 3.0.

Also, because newer devices are much faster, if you have a motherboard with PCIe 2.0 slots, you will not fully utilize some of your more unique generation cards.

The older 2.0 slot will bottleneck the newer 3.0 card’s performance; hence, you may underutilize it.

All these reasons show that sometimes newer is better when it comes to computers.

I would recommend that you also consider the newer PCIe v4.0 motherboards. While not essential for the primary use case, if you are building a performance or a gaming PC, then a PCIe v4.0 is highly recommended.

Also Read:


After this lengthy discussion about PCIe 3.0 vs. 2.0, we have seen that with the upgrade in generations, we also get an increase in the performance of the components.

PCIe components are cross-compatible, meaning that regardless of your generation, whether a 2.0 or a 3.0, you can still use the different slots and devices together without much hassle.

One thing you’ll need to note is that sometimes the motherboard may offer two different PCIe protocols at the same time for its other slots.

For instance, the AMD A320 motherboards offer PCIe v2.0 for slots connected to the motherboard chipset and PCIe v3.0 for the x16 slot connected to the CPU.

Also Read: Can a PCIe 4.0 Device Work in a PCIe 3.0 Slot?


1. What are the benefits of PCIe 3.0 over PCIe 2.0?

PCIe 3.0 offers twice the bandwidth of PCIe 2.0, which means it can handle more data and support higher transfer rates. It also supports higher power limits and provides better power management features.

2. Can you use PCIe 3.0 graphics card on a PCIe 2.0 motherboard?

Yes, you can use a PCIe 3.0 graphics card on a PCIe 2.0 motherboard, but the graphics card will be limited to PCIe 2.0 speeds.

3. What is the maximum data transfer rate of PCIe 3.0?

The maximum data transfer rate of PCIe 3.0 is 1 GB/s per lane, per direction. So a PCIe 3.0 x16 slot can provide up to 16 GB/s of bandwidth.

4. How many pins does a PCIe 3.0 x16 slot have?

A PCIe 3.0 x16 slot has 164 pins.

5. What is the difference between PCIe 3.0 x8 and x16?

PCIe 3.0 x16 has twice the number of lanes as PCIe 3.0 x8, which means it can provide twice the bandwidth. This can be important for applications that require high data transfer rates, such as gaming or video editing. However, for most applications, PCIe 3.0 x8 provides more than enough bandwidth.

Photo of author



2 thoughts on “PCIe 3.0 vs 2.0 – What is the Difference?”

Leave a Comment